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One of the major assumptions made in the study of stability of viscous liquid layers is 
that of the parallel.nature of the basic motion. This is true with reference to both bound- 
ary layers [i, 2] and thin liquid layers [2-4]. Such an assumptionmakes it possible to use 
basic flow parameters in the perturbed motion equations which are dependent on transverse co- 
ordinate only. At the present time there is much interest in the spatial nature of the flow 
in stability studies. This is true most of all with reference to boundary layers [5], where 
the main flow is weakly dependent on longitudinal coordinate (for a planar plate the param- 
eters depend on Re-I/2xX/2). For a film on a rotating disk the velocity depends on x ~/3. 
Although the exponent of x is lower than in a boundary layer, we have no small parameter 
Re -I/2 here, so that this is a more intense dependence. The present study will analyze spa- 
tial stability within the framework of linear theory. The asymptotic method developed in 
[6] will be used to obtain a solution. 

We write the fundamental equations in the cylindrical coordinate system of [i]: 

Ou/Ot + uOu/Or + vOu/Oz - -  w~/r = --Op/pOr + v(O~u/Or 2 + Ou/rOr - -  u/r ~ + 02u/Oz2), 

Ov/Ot + uOv/Or + vOv/Oz = --Op/pOz + v(O2v/Or ~ + Ov/rOr + 02v/Oz2), 

Otv/Ot + uOw/Or + vOw/Oz + uw/r = v(O2w/Or 2 + Ow/rOr - -  w/r ~ + 02w/Oz~), 

Ou/Or + u/r + Ov/Oz = O. 

Here r lies in the radial plane and z is perpendicular thereto; u, v, and w are the radial, 
axial, and tangential velocity components; p is pressure; v, kinematic viscosity; and p, 
density. Terms dependent on angle 0 are omitted from these equations, since, in the future, 
we will assume that neither the basic nor perturbed flows are dependent thereon. 

The boundary conditions for these equations are those on the disk and on the free sur- 
face 

w = Q r ,  u = O ,  v : O  ( z = O ) ,  

v = Oa/Ot + uOa/Or (z = a), 

o [  O a'~ 
p,~ O, p , ~ = - - p ~ + - - ~  = 

where a is the film thickness; PnT, stress tangent to the film surface; Pnn, normal stress; 
~, surface tension; ~, angular velocity. To study stability within the framework of the 
linear model, we represent all flow parameters in the form 

u = W ( u ~  + u6) ,  v = W(vy +v~) ,  w = W ( w y  + ws) ,  a = ao(g + ~ ) ,  

where W is the scale velocity; Uy, Vy, and Wy, corresponding components of the unperturbed 
velocity; u~, v~, and w~, corresponding perturbed-velocity components; ao, linear scale fac- 
tor; y, relative thickness of the unperturbed film; 5, amplitude of the surface perturbation, 
referenced to ao. 

We will carry the examination further using the variables 

= r/ao, n = z/a, ~ = ~V~ao. 

The problem of flow of a film on a rotating disk has been considered in [2, 4, 7-9]. In 
[2, 4, 7] asymptotic solutions were obtained, based on various approaches to the problem. In 
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[8, 9] numerical calculations of the flow were carried out, with the solution of [8] con- 
sidering the initial film profile. In the present case we will use the following asymptotic 
representation of the film parameters at large ~: 

, , , = l - l e  , z - ~ n "  + [. '~ -=f 9 7i-jt ,  n -  n.,. +~#5-6 ~ ~ + - g  -4--5 n U"'; ' ,  (1)  

w~ ~ ~ + Be 2 12 3 n 

a~ W Fr - a )  ~-ao/a, R e -  , Fr  -1 y = ~-e,,'a + Re~ ~62 __ 9-2 l~eZ'/ v --  ga~ "~" 

Analysis of these expressions and comparison to experimental and numerical results has shown 

{902/  1/4 
[i0] that Eq. (i) is usable up to rlZ = 1.5, where 1 =: ~,4,.ze~ ] and Q is the volume flow 

rate. From the condition of conservation of mass and the boundary condition on the disk, we 
can define the scale factors 

= f s  a~ t2n p'>] ' W = ao~. (2 )  

We w i l l  now c o n s i d e r  t h e  e q u a t i o n s  o f  t h e  p e r t u r b e d  f l o w .  W i t h i n  t h e  f r a m e w o r k  o f  l i n e a r  
s t a b i l i t y  t h e o r y ,  we w r i t e  t h e  e q u a t i o n s  o f  t h e  p e r t u r b e d  f l o w  and  t h e  b o u n d a r y  c o n d i t i o n s :  

OUy 0% 6' Ouy ' u 6 0u u w~jv 6 0% 8 n + u  u +------2 (3) 

a% 4 sf ~ " a% ~/, a2% 
_ ap~ . 6 '  apy la~% 6"  n " + ., n ~ - -  2 7 n ioa~ + a ~ p - 5 7 , ~ + R e - 1 t ~  u ~ ,,s 

-I- - ' - ~ -  n 2 -  -1- - -  -]- 

av~ ~ n -- + u u - -  

o-T - - - - f /  on a~ \On g "~n ] -4- R e - ~  ( a~"~ -t- !(~n 2 - -  g -7~n2 ] | - -  - -  F r - l , g  

=Re-,la2w~ g-Z(~ 2 6 a"~wv)l 
tTY-  + t T ] j ' 

!t' 0% ' 6 Ouy 5' Ouu y - 1  Or6 8 aVy n + :L n n + ~-lu~ + = 0; 
y ~ ,y g On y ~ On g2 On 

-- 2 6' 0"~ 

Oll~ 6 OWy ll' llx~j 

0-7-+ u6 -D-~ + - - ~  

Ou 6 
a~ 

, u ~ = 0 ,  v ~ = 0 ,  w s = 0  ( n = 0 ) ,  

re> ='6 A- uu6' + y'u~ (n = 1), 

u 7 

- -pe>+2Re-l (y  -aav~ 50%) = (6" + a" ) We -1,  

w h e r e  8 = 06/Or; 5 ' =  05/0~; y' = dg/d~; We -1 = o/(paoW~). 

(4) 

It is evident from Eqs. (3) and (4) that at 5 = 0 we have a trivial solution of the sys- 
tem. As in spatial stability theory we will specify perturbations of the free surface in the 
form 5 = eimr~(~), where m is the frequency of the oscillations, so that all defined param- 
eters take on the form 

~a = e  ~ t  ~ ,  ~ = {u6, v~, w~, P6}. 

After substitution of these expressions in Eqs. (i) and (2), we obtain a problem of eigen- 
values and eigenfunctions. 

To find the solutions we represent the defined quantities as (we omit the bar above ~6 
for simplicity) 

5 ~ ~ exp [ i ( y ~  + . . i ) ] ,  u~ ~ ~pexp [i(?~h + ...)1, 

v~ ~ ~Texp [i(?~h + . . . ) ] ,  p~ ~ ~sexp[i(?~ h + . . . ) ] .  (5 )  
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The terms of highest order in E are shown in Eq. (5). The definitions of m, p, r, s, and k 
are based on the requirement of regularity of the expansions and the condition that y is an 
eigenvalue, i.e., y = y(~). Maintaining the first three terms in the kinematic equation on 
the film surface, from the equation of conservation of mass and the last condition of Eq. (4) 

we find m = r = p -- */~, s = p + ~/~, k = ~/~. Thus, the solutions of Eq. (3) may be written 
in the form 

= A~-I/aZ' (6) 
u~ =- A ~;tu~ ~ o + ~-2/3u~ + ~-~/3u~ + ...)Z, 
U 6 = A~P-1/3(U 0 + ~-2/3U 1 + ~-4/3D i + . . . )~ ,  

Po = A~)+a/~(Po + ~-~/3p~ + ~-a/~p~ + "-')Z, 
~v~ = A ~-~/3(Wo + ~-73w~ + ~-~/~w~ + ...)~, 
Z = exp [/(?o~ 4/3 + y~'73 + 7~-~/~ + ...)], 

where yj and p are wave numbers. To determine the flow stability it is now necessary to de- 
fine yj and p from the equations and boundary conditions developed so far. Substituting Eq. 
(6) in Eq. (3) and boundary conditions (4), we obtain a chain of equations for determination 
of the eigenfunctions. Omitting the cumbersome intermediate steps, we will present the ex- 
pressions obtained for p and yj: 

= ~ r 4 --i co = 3.5567] + i ,oS0?oWe , (7)  7o - -  t ,333 ~-~, ~1 

. . . .  9,7397o We + 3.330  wo-2), p = - -  0,333 + 0 ,237- -  u.ovo--~-~e2 j Re~7~ - -  

72 --~ 0.724?03 We - x -  0,4397~ Re 2 We - 1 -  o,161yo + 2.7702O3Fr - I  We -1 + 

[ ( 8  ) j ~ 7 9 -o Fr-~ ?~ Re 2 + 0.4947~ + 51,8857~ We -~ - -  14.4687~ ~ We -3 + o 4 ,  46?oWe " - - i  3 , t60 0.03 + t . 0 6 7 ~  . 

To d e t e r m i n e  t h e  wave number s  (7)  o n l y  t h e  f i r s t  t e r m s  o f  Eq.  (1)  w e r e  u s e d .  I n  o r d e r  t o  
i n c l u d e  t h e  s e c o n d  t e r m s  o f  Eq.  (1)  i t  i s  n e c e s s a r y  t o  c o n s i d e r  a p p r o x i m a t i o n s  w h i c h  r e q u i r e  
a g r e a t  d e a l  o f  e f f o r t  t o  d e t e r m i n e ,  s o ,  i n  o r d e r  t o  c o n s i d e r  t h e  s e c o n d  t e r m s  o f  Eq.  (1)  o n l y  
those portions of Ya and y, were found which are directly related to these terms. As a re- 
sult, we have the following equations to complement Eq. (7): 

73 = - -  s  Re270 , 7 ~ :  - -  2,339 Re ~ yo 3 - -  i 3,320?04 Re 2 We -1. 

Thus, the propagation of surface perturbations can be described by the equations 
5 

~ exp [i (cot + / i )  + /~ l ,  (8)  

= 4 ~ [0 .724?~We - 1 -  ( 0 , 2 4 7 - - i 5  ~ F r - l ~  /i 7o~ ~''~ + 3 ,5567~ "/3 + ( ,9167o-- 3.330?oTWe-a)ln ~ + . t,778 ., ( ~ D ~ )  ?~]gte2We - 1 -  

_ 5.16i?o 7 + 54.746709 We-2]  ~-.2/3 _ 1,282 Re ~' 7o~ -r - -  2.339 Re 2 7~-,,/3, 

/~ = - ~ 5 8 ~  We-~.~-'3 + [ i `~8 ( ~.i 33 - ~333 F-~e~ ) ~ ~e2 - 9~739~o3 We-~ ] ~n ~ + [ 3`i6~ ( ~ 3 ~  +1`~67 ~ ) • 

4 14 468,10 We-~] ~-2/3 3,32070 ~ Ro~ 70 Re~ + 0,4947~ + 5t,8857o sWe - ~ -  . ~0 J~ + W e - ~ ? - ~ 3 .  

I t  f o l l o w s  f r o m  Eq.  (8)  t h a t  p e r t u r b a t i o n s  c a n  p r o p a g a t e  o n l y  i n  t h e  d i r e c t i o n  o f  i n c r e a s i n g  
~,  w h i c h  ha s  b e e n  c o n f i r m e d  by  e x p e r i m e n t  [ 1 0 ] .  I f  we now d i f f e r e n t i a t e  t h e  i m a g i n a r y  com- 
p o n e n t  o f  t h e  e x p o n e n t  w i t h  r e s p e c t  t o  r ,  we o b t a i n  t h e  d i m e n s i o n l e s s  p h a s e  v e l o c i t y  

cr = ~ {L33370 We -~ ~/a + 2.3702~ -~/a + (4.916~;o ~ 

Fr-i~ - -  3,330yo7 We-~)  ~-1 _ 0,667 [0.7247~ We-1 _ (0,247 _ 1.580 _~__e,z ) X 

• - ' -  5.i617o7 + 54,7467o~We-~] ~ -~/~ + 1,709ReZyo~ -7/a + 4,6787o3 Re'~ ~-~/~} -a, 
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whence it is evident that c~ has a minimum at some yo. The function fr indicates the change 
in perturbation amplitude. At fr > 0 the perturbations increase with increase in ~, while 
for fr < 0 they decrease. For the case Re 2 < (5/2)Fr -I, fr decreases with increasing ~ for 
all wavelengths, i.e., in this case the film flow is absolutely stable. For Re = > (5/2)Fr -I 
the quantity fr depends on wavelength. When short-wavelength perturbations develop, as they 
propagate at some distance ~ the first term in fr begins to have an effect and these pertur- 
bations damp out. The smaller Yo, the greater the distance from the center of the disk to 
which the corresponding perturbations propagate. An increase in perturbations leads to the 
appearance of waves on the film surface. Wave motion of a film on a disk was studied experi- 
mentally in [10-12]. It was shown in [12] that waves on the film surface appear at some dis- 
tance 

Li~ = ( q l ( 2 ~ J ~ J ~ ) )  ~j~. 

The further behavior of the waves depends on the flow rate supplied and the angular Vel- 
ocity of the disk. It was demonstrated numerically in [9] that at some liquid flow rate 
"flooding" of the liquid sets in. The maximum flow rate at which "flooding" of the liquid 
sets in at a distance equal to the disk radius is given by the expression 

It is interesting that if we replace the disk radius by the current radius corresponding to 
the amount of "flooding," we obtain a value close to Lin of [12]: 

In the present case we cannot describe the development and propagation of perturbations in 
this region since Lin < ~, and the asymptotic expansion of Eq. (I), as was indicated above, 
is valid for r/% ~ I~5. However, with the aid of Eq. (8) we can obtain the characteristics 
of surface waves, in particular the wave number ~ = 2~/X. As is evident from the last ex- 
pression of Eq. (8), fr has a maximum at some value Yo. This corresponds to the most rapidly 
increasing perturbations. Figure I, taken from [i0], shows curves of wave numbers calculated 
for the following perturbations: curve i) Re = 47.537, We -I = 88.868; 2) Re = 65.560, We -I = 
24.542; 3) Re = 75.303, We -~ = 14.096; the points I are for ~* = i, ~ = 0.83; II) ~* = i, 
o* = 0.96; III) ~* = 2.6, o* = 0.85 (~* and o* are the kinematic viscosity and liquid surface 
tension coefficients referenced to the corresponding quantities for distilled water). 

The straight line corresponds to the most rapidly increasing perturbations in films on 
a vertical surface. The abscissa indicates local Weber numbers We-~m = 9We-iRe-2~ ~/3. It is 
evident from Fig. 1 that wave numbers decrease with increase in Weber number. At constant 
Re and We -~ increase in the loeal Weber number We-~m is related to increase in ~, while in- 
crease in ~ causes the problem of film flow on the disk to coincide with that of film flow 
on a wall [2]. Hence it follows that with increase in ~ the wave numbers approach those of 
a film flowing on a wall. 

i. 
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SPATIAL DISTORTION OF MEAN BOUNDARY LAYER BY NATURAL OSCILLATIONS 

N. A. Zheltukhin and N. M. Terekhova UDC 532.526 

i. One of the stages in the nonlinear growth of disturbances in the transition region 
of an incompressible boundary layer on a flat plate is the generation and subsequent growth 
of three-dimensional oscillating field as a result of which disturbances are found to have 
clearly defined spatial structure with alternating maxima (crests or peaks) and minima (val- 
leys) of amplitudes in the transverse direction (along z axis). Reasons for the appearance 
of such natural wave structure have not yet been explained conclusively. One of them could 
be the interaction of the initial finite amplitude plane disturbances with small, local, spa- 
tial nonuniformities in the mean flow, which leads to the generation of a pair of oblique 
Tollmien--Schlichting waves [I]. Natural weak disturbances in the leading edge region can al- 
so be the source of subsequent real Wave fields. 

Subsequent triple-wave resonant interaction in the nonlinear growth region of plane 
waves lead to the amplification of three-dimensional components [2, 3]. Thus, it was shown 
in [4] that on attaining the threshold amplitudes K d ~ 0.007 there is a strong growth of 
oblique waves so that the characteristic disturbance field of the boundary layer takes the 
form of an additive field of Tollmien--Schlichting waves: 

u'  (x, g, Z, t) --~ • (g) e "~ ~- 2• (g) e'q~ cos fJz, 

v' (x, g, z, t) = ~d Vd (g) eal § 2• (g) e "q2 cos ~z, 

�9 Q2 w' (x, g, z, t) = 2x~tw~ (g) e sin ~z, 

(i.1) 

where ~i = iai(x -- C1t), ~2 = i~2(x -- C2t). The inclination of oblique waves to the plane 
flow is determined as 8 = arctan B/~. The presence of such characteristic disturbances leads 
to a qualitative change in the structure of the mean flow, viz., minimum values of mean veloc- 
ity at crests and maximum values at valleys are observed. This is interpreted as the appear- 
ance of a system of localized streamwise vortices in the boundary layer which are periodic 
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